Taylor Series

Single Variable and Multi-Variable

- Single variable Taylor series:

Let f be an infinitely differentiable function in some open interval around $x=a$.

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots
$$

- Linear approximation in one variable:

Take the constant and linear terms from the Taylor series. In an open interval around $x=a$,

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a) \quad \text { linear approximation }
$$

- Quadratic approximation in one variable:

Take the constant, linear, and quadratic terms from the Taylor series. In an open interval around $x=a$,

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \quad \text { quadradic approximation }
$$

- Multi variable Taylor series:

Let f be an infinitely differentiable function in some open neighborhood around $(x, y)=(a, b)$.

$$
\begin{aligned}
f(x, y)= & f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
& +\frac{1}{2!}\left[f_{x x}(a, b)(x-a)^{2}+2 f_{x y}(a, b)(x-a)(y-b)+f_{y y}(y-b)^{2}\right]+\cdots
\end{aligned}
$$

- A more compact form:

Let $\mathbf{x}=\langle x, y\rangle$ and let $\mathbf{a}=\langle a, b\rangle$. With this new vector notation, the Taylor series can be written as

$$
f(\mathbf{x})=f(\mathbf{a})+[(\mathbf{x}-\mathbf{a}) \cdot \nabla f(\mathbf{a})]+[(\mathbf{x}-\mathbf{a}) \cdot(H(\mathbf{x}) \cdot(\mathbf{x}-\mathbf{a}))]+\cdots
$$

where H is the matrix of second derivatives, called the Hessian matrix

$$
H(x, y)=\left[\begin{array}{ll}
f_{x x}(x, y) & f_{x y}(x, y) \\
f_{y x}(x, y) & f_{y y}(x, y)
\end{array}\right]
$$

- Linear approximation in multiple variables:

Take the constant and linear terms from the Taylor series. In a neighborhood of $(x, y)=(a, b)$,

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

- Quadratic approximation in multiple variables:

Take the constant, linear, and quadratic terms from the Taylor series. In a neighborhood of $(x, y)=(a, b)$,

$$
\begin{aligned}
f(x, y) \approx & f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
& +\frac{1}{2!}\left[f_{x x}(a, b)(x-a)^{2}+2 f_{x y}(a, b)(x-a)(y-b)+f_{y y}(y-b)^{2}\right] \\
= & f(\mathbf{a})+[(\mathbf{x}-\mathbf{a}) \cdot \nabla f(\mathbf{a})]+[(\mathbf{x}-\mathbf{a}) \cdot(H(\mathbf{x}) \cdot(\mathbf{x}-\mathbf{a}))]
\end{aligned}
$$

